

A Model-based Trust Region Method for Stochastic Derivative-free Optimization

Jeffrey Larson Stephen Billups

Argonne National Laboratory

July 26, 2015

We want to solve:

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} f(x)$$

when $\nabla f(x)$ is unavailable and we only have access to noise-corrupted function evaluations $\bar{f}(x)$.

We want to solve:

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} f(x)$$

when $\nabla f(x)$ is unavailable and we only have access to noise-corrupted function evaluations $\bar{f}(x)$.

Such noise may be deterministic (e.g., from iterative methods) or stochastic (e.g., from a Monte-Carlo process).

We want to solve:

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} f(x)$$

when $\nabla f(x)$ is unavailable and we only have access to noise-corrupted function evaluations $\bar{f}(x)$.

Such noise may be deterministic (e.g., from iterative methods) or stochastic (e.g., from a Monte-Carlo process).

Model-based methods are one of the most popular methods when ∇f is unavailable, and the only recourse when noise is deterministic.

We want to solve:

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} f(x)$$

when $\nabla f(x)$ is unavailable and we only have access to noise-corrupted function evaluations $\bar{f}(x)$.

Such noise may be deterministic (e.g., from iterative methods) or stochastic (e.g., from a Monte-Carlo process).

Model-based methods are one of the most popular methods when ∇f is unavailable, and the only recourse when noise is deterministic.

n is small, f is likely nonconvex.

We analyze the convergence of our method in the stochastic case:

$$\overline{f}(x) = f(x) + \epsilon,$$

where ϵ is identically distributed with mean 0 and variance $\sigma^2 < \infty$.

We analyze the convergence of our method in the stochastic case:

$$\overline{f}(x) = f(x) + \epsilon,$$

where ϵ is identically distributed with mean 0 and variance $\sigma^2 < \infty$.

This is equivalent to solving:

$$\underset{x}{\operatorname{minimize}} \ \mathbb{E}\left[\overline{f}(x)\right].$$

Strongly Λ -poised Sets

Iterates usually have the form:

$$x^{k+1} = x^k + a_k G(x^k),$$

where

▶ $G(x^k)$ is a cheap, unbiased estimate for $\nabla f(x^k)$

Iterates usually have the form:

$$x^{k+1} = x^k + a_k G(x^k),$$

where

- $G(x^k)$ is a cheap, unbiased estimate for $\nabla f(x^k)$
 - For Kiefer-Wolfowitz.

$$G_i(x^k) = \frac{\overline{f}(x^k + c_k e_i) - \overline{f}(x^k - c_k e_i)}{2c_k}$$

where e_i is the *i*th column of I_n .

Iterates usually have the form:

$$x^{k+1} = x^k + a_k G(x^k),$$

where

- ▶ $G(x^k)$ is a cheap, unbiased estimate for $\nabla f(x^k)$
 - For Spall's SPSA,

$$G_i(x^k) = \frac{\overline{f}(x^k + c_k \delta^k) - \overline{f}(x^k - c_k \delta^k)}{2c_k \delta_i^k}$$

where $\delta^{k} \in \mathbb{R}^{n}$ is a random perturbation vector

Iterates usually have the form:

$$x^{k+1} = x^k + a_k G(x^k),$$

where

▶ $G(x^k)$ is a cheap, unbiased estimate for $\nabla f(x^k)$

 $ightharpoonup a_k$ is a sequence of step sizes

Iterates usually have the form:

$$x^{k+1} = x^k + a_k G(x^k),$$

where

▶ $G(x^k)$ is a cheap, unbiased estimate for $\nabla f(x^k)$

 $ightharpoonup a_k$ is a sequence of step sizes (specified by the user) satisfying:

$$\sum_{k=1}^{\infty} a_k = \infty \qquad \lim_{k \to \infty} a_k = 0$$

Iterates usually have the form:

$$x^{k+1} = x^k + a_k G(x^k),$$

where

▶ $G(x^k)$ is a cheap, unbiased estimate for $\nabla f(x^k)$

 \triangleright a_k is a sequence of step sizes (specified by the user) satisfying:

$$\sum_{k=1}^{\infty} a_k = \infty \qquad \lim_{k \to \infty} a_k = 0$$

Algorithm performance depends significantly on sequence a_k .

Response Surface Methodology

- Build models using a fixed pattern of points, (e.g., cubic, spherical, or orthogonal designs).
- ► Finding the design that constructs response surfaces approximating the function (without few function evaluations) can be difficult for problems where the user has no prior expertise.

Modifications to Existing Methods

Take a favorite method and repeatedly evaluate the function at points of interest.

- ► Stochastic approximation modified by Dupuis, Simha (1991)
- Response surface methods modified by Chang et al. (2012)
- ▶ UOBYQA modified by Deng, Ferris (2006)
- Nelder-Mead modified by Tomick et al. (1995)
- DIRECT modified by Deng, Ferris (2007)

Modifications to Existing Methods

Take a favorite method and repeatedly evaluate the function at points of interest.

- ► Stochastic approximation modified by Dupuis, Simha (1991)
- ▶ Response surface methods modified by Chang et al. (2012)
- ▶ UOBYQA modified by Deng, Ferris (2006)
- Nelder-Mead modified by Tomick et al. (1995)
- ▶ DIRECT modified by Deng, Ferris (2007)

There are two downsides to such an approach:

- 1. Repeated sampling provides information about the noise ϵ , not f.
- 2. If the noise is deterministic, no information is gained.

Overview

We therefore desire a method that

- 1. Adjusts the step size as it progresses
- 2. Does not use a fixed design of points
- 3. Does not repeatedly sample points

Overview

We therefore desire a method that

- 1. Adjusts the step size as it progresses
- 2. Does not use a fixed design of points
- 3. Does not repeatedly sample points

We'd like the class of possible models to be general.

κ -fully Linear model

Definition

If $f \in LC$ and \exists a vector $\kappa = (\kappa_{ef}, \kappa_{eg})$ of positive constants such that

the error between the gradient of the model and the gradient of the function satisfies

$$\|\nabla f(y) - \nabla m(y)\| \le \kappa_{eg} \Delta \ \forall y \in B(x; \Delta),$$

the error between the model and the function satisfies

$$|f(y) - m(y)| \le \kappa_{ef} \Delta^2 \ \forall y \in B(x; \Delta),$$

we say the model is κ -fully linear on $B(x; \Delta)$.

α -probabilistically κ -fully Linear model

Definition

Let $\kappa = (\kappa_{ef}, \kappa_{eg})$ be a given vector of constants, and let $\alpha \in (0, 1)$. Let $B \subset \mathbb{R}^n$ be given. A random model m_k generated at the kth iteration of an algorithm is α -probabilistically κ -fully linear on B if

$$P\left(m_{k} \text{ is a } \kappa\text{-fully linear model of } f \text{ on } B \middle| \mathcal{F}_{k-1}\right) \geq \alpha$$
,

where \mathcal{F}_{k-1} denotes the realizations of all the random events for the first k-1 iterations.

Regression Models can be α -probabilistically κ -fully Linear

Theorem

For a given $x \in \mathbb{R}^n$, $\Delta > 0$, $\alpha \in (0, 1)$,

- ▶ $Y \subset B(x; \Delta)$ is strongly Λ -poised,
- ▶ The noise present in \bar{f} is i.i.d. with mean 0, variance $\sigma^2 < \infty$,
- ▶ $|Y| \ge C/\Delta^4$,

Then there exist constants $\kappa = (\kappa_{ef}, \kappa_{eg})$ (independent of Δ and Y) such that the linear model m regressing Y is α -probabilistically κ -fully linear on $B(x; \Delta)$.

In traditional trust region methods, if $x^k + s^k$ is the minimizer of m_k , the success of moving from x^k to $x^k + s^k$ is measured by

$$\rho_k = \frac{f(x^k) - f(x^k + s^k)}{m_k(x^k) - m_k(x^k + s^k)}$$

In traditional trust region methods, if $x^k + s^k$ is the minimizer of m_k , the success of moving from x^k to $x^k + s^k$ is measured by

$$\rho_{k} = \frac{f(x^{k}) - f(x^{k} + s^{k})}{m_{k}(x^{k}) - m_{k}(x^{k} + s^{k})}$$

$$\rho_k = \frac{\overline{f}(x^k) - \overline{f}(x^k + s^k)}{m_k(x^k) - m_k(x^k + s^k)}$$

In traditional trust region methods, if $x^k + s^k$ is the minimizer of m_k , the success of moving from x^k to $x^k + s^k$ is measured by

$$\rho_{k} = \frac{f(x^{k}) - f(x^{k} + s^{k})}{m_{k}(x^{k}) - m_{k}(x^{k} + s^{k})}$$

$$\rho_{k} = \frac{m_{k}(x^{k}) - m_{k}(x^{k} + s^{k})}{m_{k}(x^{k}) - m_{k}(x^{k} + s^{k})}$$

In traditional trust region methods, if $x^k + s^k$ is the minimizer of m_k , the success of moving from x^k to $x^k + s^k$ is measured by

$$\rho_{k} = \frac{f(x^{k}) - f(x^{k} + s^{k})}{m_{k}(x^{k}) - m_{k}(x^{k} + s^{k})}$$

$$\rho_{k} = \frac{m_{k}(x^{k}) - \hat{m}_{k}(x^{k} + s^{k})}{m_{k}(x^{k}) - m_{k}(x^{k} + s^{k})}$$

In traditional trust region methods, if $x^k + s^k$ is the minimizer of m_k , the success of moving from x^k to $x^k + s^k$ is measured by

$$\rho_{k} = \frac{f(x^{k}) - f(x^{k} + s^{k})}{m_{k}(x^{k}) - m_{k}(x^{k} + s^{k})}$$

$$\rho_{k} = \frac{F_{k}^{0} - F_{k}^{s}}{m_{k}(x^{k}) - m_{k}(x^{k} + s^{k})}$$

One Last Part

For our analysis, we need estimates of $f(x^k)$ and $f(x^k + s^k)$ that are slightly different than those provided by the model functions.

Let F_k^0 and F_k^s denote the sequence of estimates of $f(x^k)$ and $f(x^k + s^k)$.

We need to be able to construct estimates satisfying

$$\begin{split} & \mathbb{P}\left[\left|F_k^0 - f(x^k)\right| > \epsilon \min\left\{\Delta_k, \Delta_k^2\right\} \left|\mathcal{F}_{k-1}\right] < \theta \\ & \text{and } \mathbb{P}\left[\left|F_k^s - f(x^k + s^k)\right| > \epsilon \min\left\{\Delta_k, \Delta_k^2\right\} \left|\mathcal{F}_{k-1}\right] < \theta, \end{split}$$

for any $\epsilon > 0$ and $\theta > 0$.

Algorithm 1: A trust region algorithm to minimize a stochastic function

```
Set k=0:
Start
Build a \alpha-probabilistically \kappa-fully linear model m_k on B(x^k; \Delta_k);
Compute s^k = \arg\min_{s: ||x^k - s|| \le \Delta_k} m_k(s);
if m_k(s^k) - m_k(x^k + s^k) \ge \beta \Delta_k then
     Calculate \rho_k = \frac{F_k^0 - F_k^s}{m_k(x^k) - m_k(x^k + s^k)};
     if \rho_k \geq \eta then
          Calculate x^{k+1} = x^k + s^k: \Delta_{k+1} = \gamma_{inc} \Delta_k:
     else
     x^{k+1} = x^k; \Delta_{k+1} = \gamma_{dec} \Delta_k;
     end
else
     x^{k+1} = x^k; \Delta_{k+1} = \gamma_{dec} \Delta_k;
end
k = k + 1 and go to Start;
```

Under what assumptions will our algorithm converge almost surely to a first-order stationary point?

- ► Assumptions on *f*
- ▶ Assumptions on ϵ
- Assumptions on algorithmic constants

Assumption

On some set $\Omega \subseteq \mathbb{R}^n$ containing all iterates visited by the algorithm,

- ▶ ∇f is Lipschitz continuous with constant L_g
- f has bounded level sets

Assumption

The additive noise ϵ observed when computing \overline{f} is independent and identically distributed with mean zero and bounded variance σ^2 .

Assumption

The constants $\alpha \in (0,1)$, $\gamma_{dec} \in (0,1)$, and $\gamma_{inc} > 1$ satisfy

$$\alpha \geq \max \left\{ \frac{1}{2}, 1 - \frac{\frac{\gamma_{inc} - 1}{\gamma_{inc}}}{4\left[\frac{\gamma_{inc} - 1}{2\gamma_{inc}} + \frac{1 - \gamma_{dec}}{\gamma_{dec}}\right]} \right\},$$

where

- ightharpoonup lpha is the lower bound on the probability of having a κ -fully linear model,
- $\gamma_{dec} \in (0,1)$ is the factor by which we decrease the trust region radius,
- $ightharpoonup \gamma_{inc} > 1$ is the factor by which the trust radius is increased.

Assumption

The constants $\alpha \in (0,1)$, $\gamma_{dec} \in (0,1)$, and $\gamma_{inc} > 1$ satisfy

$$\alpha \geq \max \left\{ \frac{1}{2}, 1 - \frac{\frac{\gamma_{inc} - 1}{\gamma_{inc}}}{4\left[\frac{\gamma_{inc} - 1}{2\gamma_{inc}} + \frac{1 - \gamma_{dec}}{\gamma_{dec}}\right]} \right\},$$

where

- ightharpoonup lpha is the lower bound on the probability of having a κ -fully linear model,
- $\gamma_{dec} \in (0,1)$ is the factor by which we decrease the trust region radius,
- $ightharpoonup \gamma_{inc} > 1$ is the factor by which the trust radius is increased.

If
$$\gamma_{inc}=2$$
 and $\gamma_{dec}=0.5 \implies \alpha \ge 0.9$.
If $\gamma_{inc}=2$ and $\gamma_{dec}=0.9 \implies \alpha \ge 0.65$.

Proof Outline

Theorem

If the above assumptions are satisfied, our algorithm converges almost surely to a first-order stationary point of f.

▶ Show the sequence of trust region radii $\Delta_k \to 0$ almost surely.

Proof Outline

Theorem

If the above assumptions are satisfied, our algorithm converges almost surely to a first-order stationary point of f.

- ▶ Show the sequence of trust region radii $\Delta_k \to 0$ almost surely.
- ▶ Show if Δ_k ever falls below some constant multiple of the model gradient, $\Delta_{k+1} > \Delta_k$ with high probability.

Proof Outline

Theorem

If the above assumptions are satisfied, our algorithm converges almost surely to a first-order stationary point of f.

- ▶ Show the sequence of trust region radii $\Delta_k \to 0$ almost surely.
- Show if Δ_k ever falls below some constant multiple of the model gradient, $\Delta_{k+1} > \Delta_k$ with high probability.
- Lastly, show that, the sequence of ratios

$$\{\psi_k\} = \left\{ \frac{\left\| \nabla f(x^k) \right\|}{\Delta_k} \right\}$$

satisfies $\mathbb{E}\left[\psi_{k+1}|\mathcal{F}_k\right] \leq \psi_k$ when $\psi_k \geq L$. This allows us to prove $\left\|\nabla f(x^k)\right\| \to 0$ in probability.

Algorithm 1: A trust region algorithm to minimize a stochastic function

```
Set k=0:
Start
Build a \alpha-probabilistically \kappa-fully linear model m_k on B(x^k; \Delta_k);
Compute s^k = \arg\min_{s: ||x^k - s|| \le \Delta_k} m_k(s);
if m_k(s^k) - m_k(x^k + s^k) \ge \beta \Delta_k then
     Calculate \rho_k = \frac{F_k^0 - F_k^s}{m_k(x^k) - m_k(x^k + s^k)};
     if \rho_k \geq \eta then
          Calculate x^{k+1} = x^k + s^k: \Delta_{k+1} = \gamma_{inc} \Delta_k:
     else
     x^{k+1} = x^k; \Delta_{k+1} = \gamma_{dec} \Delta_k;
     end
else
     x^{k+1} = x^k; \Delta_{k+1} = \gamma_{dec} \Delta_k;
end
k = k + 1 and go to Start;
```

Prototype

▶ m_k is a linear regression model on a sample set of $(n+1)C_k$ sample points, where C_k is defined by

$$C_k = \left\lceil \frac{k}{1000} \right\rceil \frac{\max\left\{n+1, \left\lfloor \frac{1}{\Delta_k^4} \right\rfloor\right\}}{n+1}.$$

The sample set consists of C_k randomly rotated copies of the set

$$\{x^k, x^k + \Delta_k e_1, \ldots, x^k + \Delta_k e_n\}$$

Prototype

▶ m_k is a linear regression model on a sample set of $(n+1)C_k$ sample points, where C_k is defined by

$$C_k = \left\lceil \frac{k}{1000} \right\rceil \frac{\max\left\{n+1, \left\lfloor \frac{1}{\Delta_k^4} \right\rfloor\right\}}{n+1}.$$

The sample set consists of C_k randomly rotated copies of the set

$$\{x^k, x^k + \Delta_k e_1, \ldots, x^k + \Delta_k e_n\}$$

▶ $F_k^0 = m_k^0(x^k)$, where m_k^0 is a linear regression model using C_k randomly rotated copies of the set

$$\{x^k, x^k + 0.5\Delta_k e_1, \ldots, x^k + 0.5\Delta_k e_n\}$$

Prototype

▶ m_k is a linear regression model on a sample set of $(n+1)C_k$ sample points, where C_k is defined by

$$C_k = \left\lceil \frac{k}{1000} \right\rceil \frac{\max\left\{n+1, \left\lfloor \frac{1}{\Delta_k^4} \right\rfloor\right\}}{n+1}.$$

The sample set consists of C_k randomly rotated copies of the set

$$\{x^k, x^k + \Delta_k e_1, \ldots, x^k + \Delta_k e_n\}$$

▶ $F_k^s = m_k^s(x^k)$, where m_k^s is a linear regression model using C_k randomly rotated copies of the set

$$\{x^k + s^k, x^k + s^k + 0.5\Delta_k e_1, \dots, x^k + s^k + 0.5\Delta_k e_n\}$$

Problem Set

53 problems of the form:

$$f(x) = \sum_{i=1}^{m} [(1+\sigma)F_i(x)]^2$$
,

where $\sigma \sim U[-0.1, 0.1]$.

Problem Set

53 problems of the form:

$$f(x) = \sum_{i=1}^{m} [(1+\sigma)F_i(x)]^2$$
,

where $\sigma \sim U[-0.1, 0.1]$.

If S is the set of solvers to be compared on a suite of problems P, let $t_{p,s}$ be the number of iterates required for solver $s \in S$ on a problem $p \in P$ to find a function value satisfying:

$$f(x) - f_L \le \tau \left(f(x^0) - f_L \right),\,$$

where f_L is the best function value achieved by any $s \in S$.

Problem Set

Comments

- ▶ We are using the true function value f, not the observed \bar{f} .
- Since the noise is stochastic, each solver is run 10 times per problem.

If S is the set of solvers to be compared on a suite of problems P, let $t_{p,s}$ be the number of iterates required for solver $s \in S$ on a problem $p \in P$ to find a function value satisfying:

$$f(x) - f_L \le \tau \left(f(x^0) - f_L \right),\,$$

where f_L is the best function value achieved by any $s \in S$.

Then the performance profile of a solver $s \in S$ is the following fraction:

$$\rho_s(\phi) = \frac{1}{|P|} \left| \left\{ p \in P : \frac{t_{p,s}}{\min\{t_{p,s} : s \in S\}} \le \phi \right\} \right|$$

Then the performance profile of a solver $s \in S$ is the following fraction:

$$\rho_s(\phi) = \frac{1}{|P|} \left| \left\{ p \in P : \frac{t_{p,s}}{\min\{t_{p,s} : s \in S\}} \le \phi \right\} \right|$$

- $\rho_s(1)$: Fraction of P method s solves first.
- ▶ $\lim_{\phi\to\infty} \rho_s(\phi)$: Fraction of P method s eventually solves.
- $ho_s(\phi)$: Fraction of P method s solves in under ϕ times the evaluations required for the best method.

We compare our prototype against Spall's versions of Kiefer-Wolfowitz and SPSA with step sizes as recommended in Sections 6.6 and 7.5.2 of Spall (2003)

$$a_k = \frac{1}{(k+1+A)^{0.602}}$$
 $c_k = \frac{1}{(k+1)^{0.101}}$

where \boldsymbol{A} is one tenth of the total budget of function evaluations.

Another Problem Set

53 problems of the form:

$$f(x) = \sigma_p + \sum_{i=1}^m [F_i(x)]^2$$
,

where
$$\sigma_p \sim N\left(0, (0.1\Delta_p)^2\right)$$
 and $\Delta_p = \sum_i F_i(x^0) - \sum_i F_i(x^*)$.

Further Information and Current Work

Preprint on Optimization Online

"Stochastic Derivative-free Optimization using a Trust Region Framework"

Further Information and Current Work

Preprint on Optimization Online

"Stochastic Derivative-free Optimization using a Trust Region Framework"

- Generalizing results to ensure a practical algorithm converges.
 - For example, not requiring α -probabilistically κ -fully linear models every iteration.

Further Information and Current Work

Preprint on Optimization Online

"Stochastic Derivative-free Optimization using a Trust Region Framework"

- ► Generalizing results to ensure a practical algorithm converges.
 - For example, not requiring α -probabilistically κ -fully linear models every iteration.
- Smartly constructing α -probabilistically κ -fully linear models.